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Abstract 

We consider the inclusive cross section for jet production with large trans- 
verse momentum in deep-inelastic scattering. This process has been proposed 
as a probe of small-x physics, particularly the measurement of ‘hot spots’ in- 
side the proton. We present a numerical calculation of this process, taking 
into account a larger phase space. The theoretical reliability ss well ss phe- 
nomenological uncertainties of the calculation are discussed. 
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1 Introduction. 
In order to study the main properties of low zg deep-inelastic scattering 
processes, Mueller suggested in [l] an experiment in which all anticipated 
new phenomena in this kinematical region should have a large effect. His 
idea was to measure the inclusive production of a gluon jet with a transverse 
momentum kj,, very close to the photon virtuality Q and with a fraction of 
energy zj as close to one as is feasible, so that the ratio Zs/Zj can be small. 
In this csse, 

l the cross section of the process can be calculated within the framework 
of perturbative QCD, if J$ z Q2 >> A&n. 

l the dependence of the cross section on zg is governed by low 5s gluon 
emission which can be described by the BFKL evolution equation [2]. 
This is in contrast with the usual GLAP (31 approach, in which the 
cross section is described by the simple Born diagram of Fig.la. and 
turns out to be constant with respect to zs. 

l the scale of the shadowing corrections is determined by the size of the 
‘hot spot’ , namely R 
ref. [4]). 

N l/kj,r and they are expected to be large (see 

Numerical estimates for this process have been performed in a series of 
papers [5]-[9], but, in our view, the matter has not been settled yet (cf. the 
strong dependence on an infrared cut-off in the BFKL equation with running 
coupling, for values of k: and QZ that are smaller than about 50 GeV* [7]-[9]). 

In this paper we reconsider the theoretical formulae for the cross section 
and present our numerical estimates in studying the small-x and infrared 
behavior of the one-jet inclusive cross section. We will not consider any 
shadowing corrections. 

2 The basic formula. 

The correct formula for inclusive one-jet production in the region of small zs 
was given in ref. [ll]. In terms of a differential structure function involving 
the jet variables Zj and kf (resp. the longitudinal momentum fraction of the 
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jet and its tranverse momentum squared), it looks as follows for gluon jet 
production 

dFz(zB,Q’;xj,kf) 3Ne d%,t&a,t 
dlnzjdk: = nk: J 7T . as(min{k&, k&, kf)) 

~B(Z, kf,t, Q’)bo(zj, k&l ’ J”(kt - kl,t - k2.t) 

(2.1) 

where all notation is explained in Fig.lb., X(z, y, z) = x2 + y* + zz - 2xy - 
2x.2 - 2~2, and @o is the gluon density, related to the gluon distribution 
function xG(x, Q2) by 

(2.2) 

As wss shown in ref. [lo], eq. (2.1) can be reduced in the double logarithm 
approximation (DLA) of perturbative QCD to the expression of eq.(51) in 
[ll], where the inclusive production in deepinelastic scattering was studied 
in detail within this approximation. (see also [lo]). If we integrate in eq. 
(2.1) only the part of phase spsce where k& << ii& (k& N k:) (‘small’ 
phase spsce) we can rewrite eq. (2.1) in the form: 

dF2 
d In xjdk! = $ Jdk,l,t '(~g(k~,t)~~(~,k:,Q~)~~(+jlk:O 

3; 
3 

= ~crs(k:)~B(~.k:,Q*)xjG(xj,k:). (2.3) 
I 

It is this equation that was used in all previous numerical estimates of the 
inclusive jet production [5]-[9]. H ere we calculate the differential structure 
function without any restriction on the region of integration (‘large’ phase 
space). In comparing the two we will find an enhancement of the cross section 
due to the larger phase space of about 80 %. 
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3 Calculational procedure. 

The functions 4 in eq. (2.1) are solutions of the BFKL-equation [2], 

;f;;;;;; = % c &“{ 4(x7 k”),-$$-‘-‘okZik” + ;(4$$;,~c1,2) ), 

(3.1) 
We now discuss aspects of our procedure of solving this equation. 

\- 

We chose different initial conditions for the functions #n( T, kf, Q2) and 
&(xj, kf) m (2.1). For &(z, kf, Q*) we used the same initial condition as 
in ref. [7], namely at 20 = XB/Xj = 10-l 

4B(ZO, k;, *2) = Wc$ Q') N NT; Q') , 

where the function Fs, related to the quark box diagram, wss calculated in 
refs. [5]-(71. For &(Xj, kf) we have to reconstruct the initial condition from 
experimental data. However, in order to solve the BFKL-equation we need 
to know the behavior of d at any value of kf for some 6xed x, even at k: + 0. 
To accomplish this, we used the following procedure to describe the low kf 
behavior of xjG(xj, k:): 

xjG(xjzj, k*) --t 
k* 

k* +d 
ZjG(Zj, P) (3.3) 

where i2 = k* + qi, ? = x/(x + k2/i2(1 - x)). We used the mapping (3.3) 
because (1) this parametrization ensures xjG(xjzj, k*) N k2 as k* + 0 and 
such a behavior is the direct consequence of the gauge invariance of QCD, 
and (2) it works for the case of F2 (see refs. [12]-[13]). 

For the function ZjG(Zj, i*) we used a fit 4 to the data set from the CTEQ 
collaboration [14] down to Q2 values of 1 Gev. The initial condition for 4~ 
wss then constructed according to (2.2) (we used a 6xed coupling), at a value 
x = lo-*, where, as in [7], instead of xG(z, k2) we used the effective density 
4x, k*) + $ C&l x[qj(x, k2) + qj(x, k*)]. 

We solved5 the BFKL equation (3.1) with a 6xed coupling or = as(Q*) 
because this equation only sums the leading logs ((IS ln(l/x))“, and not the 

‘We arc grateful to J. Elotts for making this fit, and discussions relating to it. 
‘We are grateful to J. Kwi&ki for sending IM hia program to solve the BFKL equation 

t.WLUeridy. 
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subleading ones. The latter remains an unsolved problem. However, we made 
a rough estimate of how important the corrections from a running a~ could 
be by calculating an average QS 

< QS ,{= ldk2aS(k2Mii(z7k2) 
Idk*h(z,k*) 

, i = B c 
(3.4) 

The dependence of < as >i on zn showed that we could use as = as(Q*) ss 
a good first approximation. For example, for k* = Q* = 10 GeVs, we found 
as(Q*) N 0.2, and < QS >iZ 0.15 for z < lo-* for both i = B, G. 

A much more detailed study of this problem can be found in [9]. 
The last point we discuss is the infrared cut-off I$ in eq. (3.1). In principle 

eq. (3.1) is infrared stable and one can take kg = 0. However, in order to 
further investigate the dependence of the solution of (3.1) on small momenta 
we preferred to introduce a cut-off !c: and see how much the snswer depends 
on its value. 

4 Results and conclusions. 

The results are shown in Figs.2a and 2b. for the values k* = Q* = 10 GeVZ, 
Zj = IO-*. The first obsenration we make from Fig.2a is that the answer for 
(2.1) when one includes the correct (‘large’) phase space increases the results 
of previous calculations (small phase space) by about 80 %. Furthermore, 
the dependence on & is visible, but does not compensate for the difference 
between small and large phase space. A similar conclusion we found to hold 
for the dependence on the infrared cut-off k,2. 

The most discouraging result is shown in Fig.2b. Here we plot the nor- 
malized differential structure function 

R*= l dF&B,Q*;~j,k*) 
F2kB, 8*) d In Zjdk* 

where we took Fe(z,Q*) = /dk*&(y, k2,Q2)&(zjI k*). One notes that 
this ratio seems to be independent of zg. This would seem to indicate that, 
within the approximations made, this special environment does not seem to 
be much better for measuring small-x effects than a direct measurement of 
Ft. This feature persisted when we took F&r, Q*) constructed from the MFE 
D-’ distributions [15]. 
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Figure Captions 

Fig.la. Born diagram for single gluon jet production in deep-inelastic scat- 
tering. 

Fig.lb. Single-jet production in deepinelsstic scattering in the large phase 
space case. 

Fig.2a. Plot of e VS. ZB. The value of Zj is 0.01 and we took kZ = 
Q* = 10 Gev?. The solid line corresponds to the small phase space case, 
the three remaining to the large phase space case with three different 
values of q$, namely 4 = 1 GeVs (long-dashed), pi = 2 GeV* (short- 
dashed) and qi = 4 GeVs (dotted). 

Fig.2b. The ratio R2 (4.1) for three values of d in the large phase space 
case. The notation is the same ss in Fig.2a. 
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